Metal amorphous nanocomposite (MANC) soft magnetic materials exhibit remarkably low iron loss and high saturation magnetization. However, they have not been widely used in electric motors largely due to a lack of demonstrated manufacturing processing methods and an absence of proven motor designs well suited for their use. Recent developments in these two areas have prompted the optimization study of flux-switching with permanent magnet motor topology using MANCs presented here. This study uses population-based optimization in conjunction with a simplified electromagnetics model to seek rare earth-free designs that attain or exceed the state of the art in power density and efficiency. To predict the maximum mechanically safe rotational speed for each design with minimal computational effort, a new method of quantifying the rotor assembly mechanical limit is presented. The resulting population of designs includes motor designs with a specific power of up to 6.1 kW/kg and efficiency of up to 99% without the use of rare earth permanent magnets. These designs, while exhibiting drawbacks of high electrical frequency and significant manufacturing complexity, exceed the typical power density of representative state-of-the-art EV motors while increasing efficiency and eliminating rare earth elements.
Loading....